Analysing knowledge transfer in SHADE via complex network

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paraphrasing Complex Network: Network Compression via Factor Transfer

Deep neural networks (DNN) have recently shown promising performances in various areas. Although DNNs are very powerful, a large number of network parameters requires substantial storage and memory bandwidth which hinders them from being applied to actual embedded systems. Many researchers have sought ways of model compression to reduce the size of a network with minimal performance degradation...

متن کامل

Knowledge brokers in a knowledge network: the case of Seniors Health Research Transfer Network knowledge brokers

BACKGROUND The purpose of this paper is to describe and reflect on the role of knowledge brokers (KBs) in the Seniors Health Research Transfer Network (SHRTN). The paper reviews the relevant literature on knowledge brokering, and then describes the evolving role of knowledge brokering in this knowledge network. METHODS The description of knowledge brokering provided here is based on a develop...

متن کامل

Robust Visual Knowledge Transfer via EDA

—We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA...

متن کامل

Net2Net: Accelerating Learning via Knowledge Transfer

We introduce techniques for rapidly transferring the information stored in one neural net into another neural net. The main purpose is to accelerate the training of a significantly larger neural net. During real-world workflows, one often trains very many different neural networks during the experimentation and design process. This is a wasteful process in which each new model is trained from s...

متن کامل

General Heterogeneous Transfer Distance Metric Learning via Knowledge Fragments Transfer

Transfer learning aims to improve the performance of target learning task by leveraging information (or transferring knowledge) from other related tasks. Recently, transfer distance metric learning (TDML) has attracted lots of interests, but most of these methods assume that feature representations for the source and target learning tasks are the same. Hence, they are not suitable for the appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Logic Journal of the IGPL

سال: 2018

ISSN: 1367-0751,1368-9894

DOI: 10.1093/jigpal/jzy042